If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42+y-y^2=0
We add all the numbers together, and all the variables
-1y^2+y+42=0
a = -1; b = 1; c = +42;
Δ = b2-4ac
Δ = 12-4·(-1)·42
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-13}{2*-1}=\frac{-14}{-2} =+7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+13}{2*-1}=\frac{12}{-2} =-6 $
| 11=-5+3x | | 3/4z+4=12 | | 5( | | 4x+3/9=5 | | 11+1/4x=-5 | | 47=-3+10p | | 6(1-x)-3(x-7)=9 | | f(2)=6+12 | | 90+9x=50+30x | | f(8)=24+12 | | f(5)=15+12 | | f(10)=30+12 | | x/6=80 | | -8(7a+1)+8(-3+8a)=-80 | | 2-3(m-1)=2m+4 | | 4=z−63 | | 5x+6-2x=7x-14 | | 20/5=x/30 | | 2/5b-4=20 | | 3+k=2-k | | 49r+52=5 | | 21+1/3x=-9 | | 4(4+2n)=48 | | 8x+4-3x=44 | | -2w+3(w-5)=-30 | | b+(b+23)=365 | | F(-1)=9x-10x0 | | 5c+16.5=13.5+1 | | -3+9a=16 | | ∣5x−7∣=13 | | 8x-4=2x+24 | | 8x-20=4x+18 |